Articles Online (Volume 11, Issue 6)

Original Research

Screening Preeclamptic Cord Plasma for Proteins Associated with Decreased Breast Cancer Susceptibility

Hoi Pang Low, Ashutosh Tiwari, Jagadeesh Janjanam, Li Qiu1, Chien-I Chang, William C. Strohsnitter, Errol R. Norwitz, Sun W. Tam, , James E. Evans, Karin M. Green, Joao A. Paulo, Mats Lambe, Chung-Cheng Hsieh

Preeclampsia, a complication of pregnancy characterized by hypertension and proteinuria, has been found to reduce the subsequent risk for breast cancer in female offspring. As this protective effect could be due to exposure to preeclampsia-specific proteins during intrauterine life, the proteomic profiles of umbilical cord blood plasma between preeclamptic and normotensive pregnancies were compared. Umbilical cord plasma samples, depleted of 14 abundant proteins, were subjected to proteomic analysis using the quantitative method of nanoACQUITY ultra performance liquid chromatography–mass spectrometry with elevated energy mode of acquisitionE (NanoUPLC-MSE). Sixty-nine differentially expressed proteins were identified, of which 15 and 6 proteins were only detected in preeclamptic and normotensive pregnancies, respectively. Additionally, expression of 8 proteins (gelsolin, complement C5, keratin type I cytoskeletal 10, pigment epithelium-derived factor, complement factor B, complement component C7, hemoglobin subunit gamma-2 and alpha-fetoprotein) were up-regulated in preeclampsia with a fold change of ⩾2.0 when compared to normotensive pregnancies. The identification of alpha-fetoprotein in preeclamptic umbilical cord blood plasma supported the validity of this screen as alpha-fetoprotein has anti-estrogenic properties and has previously been linked to preeclampsia as well as a reduced breast cancer risk. The findings of this pilot study may provide new insights into the mechanistic link between preeclampsia and potentially reduced breast cancer susceptibility in adult life.

Page 335–344


Original Research

Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data

Luis Guillermo Leal, Álvaro Perez, Andrés Quintero, Ángela Bayona, Juan Felipe Ortiz, Anju Gangadharan, David Mackey, Camilo López, Liliana López-Kleine

Recent advances in genomic and post-genomic technologies have provided the opportunity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the understanding of complex mechanisms such as plant immune responses. Better knowledge of this process could improve crop production and management. Here, we used holistic analysis to combine our own microarray and RNA-seq data with public genomic data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was based on a kernel method adapted for the construction of gene networks. The obtained results allowed us to propose a list of new IRGs. A putative function in the immunity pathway was predicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well documented or recognized in previous co-expression studies. In addition to robust relationships between IRGs, there is evidence suggesting that other cellular processes may be also strongly related to immunity.

Page 345–353


Original Research

An Integrative Meta-analysis of MicroRNAs in Hepatocellular Carcinoma

Mahmoud ElHefnawi, Bangli Soliman, Nourhan Abu-Shahba, Marwa Amer

We aimed to shed new light on the roles of microRNAs (miRNAs) in liver cancer using an integrative in silico bioinformatics analysis. A new protocol for target prediction and functional analysis is presented and applied to the 26 highly differentially deregulated miRNAs in hepatocellular carcinoma. This framework comprises: (1) the overlap of prediction results by four out of five target prediction tools, including TargetScan, PicTar, miRanda, DIANA-microT and miRDB (combining machine-learning, alignment, interaction energy and statistical tests in order to minimize false positives), (2) evidence from previous microarray analysis on the expression of these targets, (3) gene ontology (GO) and pathway enrichment analysis of the miRNA targets and their pathways and (4) linking these results to oncogenesis and cancer hallmarks. This yielded new insights into the roles of miRNAs in cancer hallmarks. Here we presented several key targets and hundreds of new targets that are significantly enriched in many new cancer-related hallmarks. In addition, we also revealed some known and new oncogenic pathways for liver cancer. These included the famous MAPK, TGFβ and cell cycle pathways. New insights were also provided into Wnt signaling, prostate cancer, axon guidance and oocyte meiosis pathways. These signaling and developmental pathways crosstalk to regulate stem cell transformation and implicate a role of miRNAs in hepatic stem cell deregulation and cancer development. By analyzing their complete interactome, we proposed new categorization for some of these miRNAs as either tumor-suppressors or oncomiRs with dual roles. Therefore some of these miRNAs may be addressed as therapeutic targets or used as therapeutic agents. Such dual roles thus expand the view of miRNAs as active maintainers of cellular homeostasis.

Page 354–367


Original Research

Hands-on Workshops as An Effective Means of Learning Advanced Technologies Including Genomics, Proteomics and Bioinformatics

Nichole Reisdorph , Robert Stearman, Katerina Kechris, Tzu Lip Phang, Richard Reisdorph, Jessica Prenni, David J. Erle, Christopher Coldren, Kevin Schey, Alexey Nesvizhskii, Mark Geraci

Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications.

Page 368–377


Letter

Identification of the Phosphorylated Residues in TveIF5A by Mass Spectrometry

Laura Itzel Quintas-Granados, César López-Camarillo, Jesús Fandiño Armas, Guillermo Mendoza Hernandez, María Elizbeth Alvarez-Sánchez

The initiation factor eIF5A in Trichomonas vaginalis (TveIF5A) is previously shown to undergo hypusination, phosphorylation and glycosylation. Three different pI isoforms of TveIF5A have been reported. The most acidic isoform (pI 5.2) corresponds to the precursor TveIF5A, whereas the mature TveIF5A appears to be the most basic isoform (pI 5.5). In addition, the intermediary isoform (pI 5.3) is found only under polyamine-depleted conditions and restored with exogenous putrescine. We propose that differences in PI are due to phosphorylation of the TveIF5A isoforms. Here, we have identified phosphorylation sites using mass spectrometry. The mature TveIF5A contains four phosphorylated residues (S3, T55, T78 and T82). Phosphorylation at S3 and T82 is also identified in the intermediary TveIF5A, while no phosphorylated residues are found in the precursor TveIF5A. It has been demonstrated that eIF5A proteins from plants and yeast are phosphorylated by a casein kinase 2 (CK2). Interestingly, a gene encoding a protein highly similar to CK2 (TvCK2) is found in T. vaginalis, which might be involved in the phosphorylation of TveIF5A in T. vaginalis.

Page 378–384


Method

Bagging with CTD – A Novel Signature for the Hierarchical Prediction of Secreted Protein Trafficking in Eukaryotes

Geetha Govindan, Achuthsankar S. Nair

Protein trafficking or protein sorting in eukaryotes is a complicated process and is carried out based on the information contained in the protein. Many methods reported prediction of the subcellular location of proteins from sequence information. However, most of these prediction methods use a flat structure or parallel architecture to perform prediction. In this work, we introduce ensemble classifiers with features that are extracted directly from full length protein sequences to predict locations in the protein-sorting pathway hierarchically. Sequence driven features, sequence mapped features and sequence autocorrelation features were tested with ensemble learners and their performances were compared. When evaluated by independent data testing, ensemble based-bagging algorithms with sequence feature composition, transition and distribution (CTD) successfully classified two datasets with accuracies greater than 90%. We compared our results with similar published methods, and our method equally performed with the others at two levels in the secreted pathway. This study shows that the feature CTD extracted from protein sequences is effective in capturing biological features among compartments in secreted pathways.

Page 385–390